使用半固态片与内芯板进行受控阻抗布线

Zachariah Peterson
|  已创建:December 29, 2019  |  已更新:March 10, 2021

IC on prepreg vs. core materials

当我刚开始学习PCB设计要点时,我的印象是内芯板是某种特殊材料。但其实这并非一定如此,设计人员在根据自身需求选择最合适的内芯板/半固态片布局方面拥有一定的自由度。当涉及到受控阻抗布线时,尤其是在高频下,使用内芯板还是半固态片层作为分离电介质已经成为一个重要的问题。

那么,究竟哪个层最适合用于受控阻抗布线呢?在考虑纤维编织效应之前,要想对电路板阻抗实现更好的控制,必须先提高介电常数均匀性。它还要求制造后生产出的电路板在介电常数方面具有更高的一致性和可预测性。在确定半固态片与内芯板层的位置时,您应该根据这些要求,仔细选购适合您的正确层堆栈材料。

半固态片与内芯板的受控阻抗

内芯板是厚的刚性玻璃纤维层,通常布置在层数较少的电路板中央。据我所知,使用“内芯板”一词会使一些新手设计师从字面上理解这一术语,即任何设计都必须在电路板的中央布置一个内芯板,然后围绕该内芯板构建其他层。后来我才知道,这并不是一个严格的要求,尤其是在层数逐渐增加的情况下。实际上,内芯板和半固态片层可以交替存在,而且中间层并不总是内芯板层。重要的一点是,无论内芯板层布置在何处,层堆栈都是对称的。

半固态片并未完全固化,因此充当了内芯板层之间的胶水。在最近的 1.57 毫米标准厚度板的项目中, 我们在外层使用了Rogers内芯板,在内层使用了FR4半固态片/内芯板。这种混合多层板很常见(即FR4上的PTFE层压板)。成本是一个考虑因素,因为不同的材料会带来不同的成本,因此,搭载高速/高频信号的层通常选用低损耗层压板。

通常情况下,由于内芯板材料已经与铜结合,就介电常数和厚度而言,内芯板层比半固态片具有更高的可再现性。相比之下,半固态片制造商只能指定原材料的介电常数范围;它们未指定组装后的介电常数,而这一介电常数将确定互联器上的信号所见的有效介电常数。一些特殊的低损耗半固态片层压板的介电常数变化可能非常大(超过50%)。

Pressing and cutting for prepreg vs core materials

单层还是双层内芯板?

某些玻璃编织样式不同的内芯板材料的介电常数存在显著差异,这也取决于特定的内芯板材是单层还是双层构造。106和106/1080内芯板就是完美的例子。这些材料的介电常数大约相差10%,如果采用现有设计并在单层和双层内芯板之间进行交换,则需要调整走线宽度。

除了层数之外,具有相同 编织样式和孔隙率 的半固态片和内芯板将具有不同的介电常数,并且不同的层压板厚度也要求使用不同的玻璃编织样式。这就是为什么通常根据所需的Dk范围对材料进行分类的原因,许多制造商只会简单地指出可用于产品图纸中的内芯板和半固态片的厚度、编织样式以及层数。这些材料的树脂含量和厚度的变化将产生不同的介电常数。

如何与制造商合作

通过设计叠层使层具有标准化厚度可能是DFM中人们讨论最少的一个方面,但这也有可能是最重要的一个方面。您的EDA工具可能会让您输入您所需的任意层厚度值。在传达半固态片层阻抗控制要求时,通常会指定走线宽度和铜的重量(可以轻松转换为走线厚度)、所需的阻抗值以及所需的介电常数和层压板厚度。

如果您已经围绕制造商提供的标准化材料设计了电路板,则您无需再进行其他修改。如若不然,您的制造商将需要根据您的具体要求选择最接近的半固态片厚度。但是,请记住,并非所有制造商都会遵循材料数据表上列出的厚度值来规划自己的压出厚度。

Prepreg vs core dielectric for impedance control

电介质可重复性和内芯板层的标准化程度越高,意味着受控阻抗设计的可预测性越高(即,整个板上的介电常数变化较小)。对于对称带状线,也可以使用厚度相同的内芯板和半固态片。无论您如何布置半固态片和内芯板,都应对称地布置层堆栈,以防止在制造过程中,板在经历冲压和冷却操作后发生变形。混合不同材料也是一种常见的做法,例如 将高速层压板与FR4内芯板混合。但是,并非所有材料都应该(或可以)组合,具体应取决于树脂的类型和每种材料的热膨胀系数(CTE)。最好的电路板将使用CTE与铜CTE值尽量匹配的内芯板和半固态片。

当您使用带有集成叠层和阻抗计算器工具的PCB设计软件时,半固态片与内芯板的选择和布线最为容易。 Altium Designer® 中的层堆栈管理器是理想的工具,可用于设计具有受控阻抗的电路板并布置理想的层堆栈。您还可以访问一个海量材料库,该材料库中包含了各种各样标准材料的重要数据。您还可以为特殊基板材料指定不同的材料属性。

现在,您可以下载Altium Designer 免费试用版 ,详细了解业界最佳的布局、仿真和产品规划工具。 立即联系我们 了解更多信息。

关于作者

关于作者

Zachariah Peterson拥有学术界和工业界广泛的技术背景。在从事PCB行业之前,他曾在波特兰州立大学任教。他的物理学硕士研究课题是化学吸附气体传感器,而应用物理学博士研究课题是随机激光理论和稳定性。他的科研背景涵盖纳米粒子激光器、电子和光电半导体器件、环境系统以及财务分析等领域。他的研究成果已发表在若干经同行评审的期刊和会议论文集上,他还为多家公司撰写过数百篇有关PCB设计的技术博客。Zachariah与PCB行业的其他公司合作提供设计和研究服务。他是IEEE光子学会和美国物理学会的成员。

最新文章

返回主页