Altıum.

ALTIUMLIVE 2018: Designing for Adaptation

Hunter Scott Reach Labs, Dir. HW Engineering **San** Diego 10/4/18

Altium

Who I am

- Director of Hardware Engineering at Reach Labs
- Design phased arrays, power systems
- ~10 years of HW experience

What this is about

• How to design defensively and make it easy to modify your boards so you can skip re-spins

Altium

• "DFH" - Design for Hacking

What this isn't about

- How to rework
- How to debug/troubleshoot

Altium

• Design for manufacturing

Difficulty of rework

Don't get intimidated. You need:

Altium

- A stereo microscope
- Good soldering iron
- No coffee

or

• A good technician

Altium

Useful standards

IPC-7711/7721 - Rework, Modification, and Repair of Electronic Assemblies
IPC-A-600 - Acceptability of Printed Circuit Boards
IPC J-STD-001-G - Requirements for Soldered Electrical and Electronic
Assemblies

IPC-A-610E - Acceptability of Electronic Assemblies

Altium

Organization

- Comment and annotate schematics
- Label testpoints
- Describe correct behavior

Altium.

High level techniques

- Isolate subcircuits 1 2
 - Give yourself options
- 3
- Make it easy to go between those options

Altium.

High level techniques

Why it's a good idea:

- Allows you to use pieces of multiple designs together
- With multiple boards, you can do A/B testing of modifications
- Plus easier to debug, characterize, verify

Altium

Series resistors

Note: 0 ohm resistors can actually be as high as 50 mOhm. Pick a precision small value to get a resistor closer to 0 ohms.

Altium

Load Switche⁻

Load switches allow digitally controlled/selective isolation, plus bonus debugging signals

Altium

486-1991-ND

Altium

Jumpers

From Victor Laynez, @roteno

Altium

Connectors

Watch out for big current loops in power lines. Will wreck EMC. Also watch out for loss in RF lines.

Altium

Connectors

Example from TI Launchpad

Altum

Connectors

RF jumper/isolation

Altium.

High level techniques

Altium

DNP is your best friend

- Costs nothing
- Easiest rework option you have
- DNP all over the place!

Altium

DNP Filters

Classic example: pi/T network

Altium

DNP RF Connectors

U.FL connector to measure before antenna

Altium

DNP RF Connectors

Another example from the TI board with a smaller connector before PCB antennas

Altium

DNP RF Connectors

BTW, tiny RF connectors are super confusing.

U.FL = IPEX = IPX = AMC = MHF = UMCC

If it's not one of those, it won't fit and you won't realize it until the moment you try to plug it in.

U.FL ≠ E.FL ≠ W.FL ≠ lots of other tiny, similar looking connectors

*Don't forget, these only work up to 6 GHz. If you're higher than that, you need a different (bigger, more expensive) connector.

Altium

DNP Debug Connectors

DNP Entire sub-circuits

- Use this to try different implementations of the same circuit
- Also useful if you want to make multiple versions of the same product

Altium

Altium

Altium

Altium

Altium

Castellated modules

- Add and remove entire subcircuits
- Easier to redesign a risky section instead of the whole board
- Allows easy isolation for test before integration

Altium

Castellated modules

Make sure to tell your fabricator you want the board to be castellated

Castellated modules

They also allow you to use pre-made components, like power supplies.

If you want to make multiple versions of a product, but they have different power requirements, you can swap out modules.

Altium

Castellated modules

Downsides:

- Takes up way more space
- If you have lots of pins, you need a larger module
- Not great for RF
- Not great for high power
- Not great for high speed

Altium

Altium

Altium

Altium

- This can be pretty jank
- But it can also work
- The more parts that need to be covered by the adapter, the harder it is
- Don't use the datasheet recommended pad size on the bottom of the adapter board. You need to go slightly smaller.
- XRay if you can, and use flux.

Pull up/down

Put in both pull up and pull down resistors, but only populate one.

Altium

Extra IO

Break out spare IO and status/settings pins

Altium

PCB notes

Put a rectangle of white silkscreen in a corner and you can use it to label boards with specific changes or other notes.

Altium

Chokes

Add a series choke that you can replace with a OR if you need to. Very helpful for EMC testing.

Altium

Shielding

- Put down pads for a removable shield just in case
- Use removable can shields instead of solder down shields

Altium

High level techniques

Make it easy to go between those options

Vias in pads

Vias in pads

Altium

Vias in pads

Altium

Tenting vias

Look at all those test points!

Altium

Tenting vias

Test points

Put test points everywhere.

- Copper test point for small spaces
- Solderable testpoints for bigger stuff (like power)
- These big ones won't break off after hours of abuse

36-5018CT-ND

Test points

Putting test points on communication lines helps with probing and moving/adding things to the bus.

Label them in silkscreen! Make sure they're not obscured by other footprints.

Altium

Resistor dividers

If you're controlling settings using a resistor divider, use a pot instead. Makes it easier to adjust and tune rather than swap out resistors over and over.

Power

Pick LDOs that have a high input voltage rating so you can change power sources

Voltage - Input (Max)	6V
Voltage - Output (Min/Fixed)	0.8V
Voltage - Output (Max)	5.5V

Voltage - Input (Max)	20V
Voltage - Output (Min/Fixed)	3.3V

Footprints

If you can help it:

- Don't use QFN. External pins are easier to deal with.
- Don't pick very small parts (0201, even 0402).
- Draw footprints slightly larger or longer than in the datasheet

Stackup

Keep all parts on the same side if possible. Way easier to reflow and rework. Big boards (large thermal mass) or parts that need to be reflowed can be done in a reflow oven.

Altium

Use leaded solder. It's easier to work with. Change to lead free during production.

Have a ground plane and power plane.

Soldering

- Leave space for a soldering iron tip
- Think about things that can melt (like plastic connectors)

Other materials

• If you need to use underfill, consider something like Loctite UF 3810. It can be removed with hot air.

Altium

• Avoid potting, RTV, or conformal coating until you're happy with the electrical performance

Silkscreen

- Mark pin numbers periodically
- Make sure designator is visible when part is populated

Altium

Circuit tape

- From CircuitMedic.com
- Holds wires to PCB, cures fully in 72 hours. Leaves no residue.

What about RF?

"RF is scary and fragile and I'm afraid I'll mess it up" - almost everyone

What about RF?

We already saw how to jumper RF

What about RF?

You can also buy really thin gauge coax cable (micro coax)

Product Attributes				
	Categories	Cables, Wires		
		Coaxial Cables (RF)		
	Manufacturer	Molex - Temp Flex		
	Series	Temp-Flex 100066		
Part Status		Active		
	Cable Type	Coaxial		
	Cable Group	-		
	Wire Gauge	30 AWG		
(Conductor Strand	7 Strands / 38 AV	VG	
Jacket (Insulation) Material		Fluorinated Ethylene-Propylene (FEP)		
Jacket (Insulation) Diameter		0.071" (1.80mm)		
Shield Type		Braid		
Impedance		50 Ohms		

,

What about RF?

Part	Status	Active	
Cable	e Type	Micro Coaxial	
Cable	Group	-	
Wire	Gauge	50 AWG	
Conductor Strand		7 Strands / 58 AWG	
Jacket (Insulation) M	aterial	Perfluoroalko	ky (PFA)
Jacket (Insulation) Dia	ameter	0.006" (0.16m	ım)
Shield	d Type	Spiral	
Impe	dance	50 Ohms	

Altium

A9450W-328-ND \$5.50 a foot

Pigtails

Semi-rigid pigtails are better than floppy ones

Altium

Pigtails

Give yourself a low inductance ground pad for your pigtails

Coplanar waveguide

- Easier to pigtail
- Possible to probe without soldering

Antennas

If your design allows it, picking an antenna structure that is easy to modify can be helpful.

Altium.

High level techniques

- Isolate subcircuits 1 2
 - Give yourself options
- 3
- Make it easy to go between those options

Thank you!

Slides: hscott.net/adaptation @hunterscott