Altium_•

ALTIUMLIVE 2018: NAVIGATING THE COMPLEXITIES OF PCB MATERIAL SELECTION

Chris Hunrath Insulectro, VP of Technology

San Diego October 4

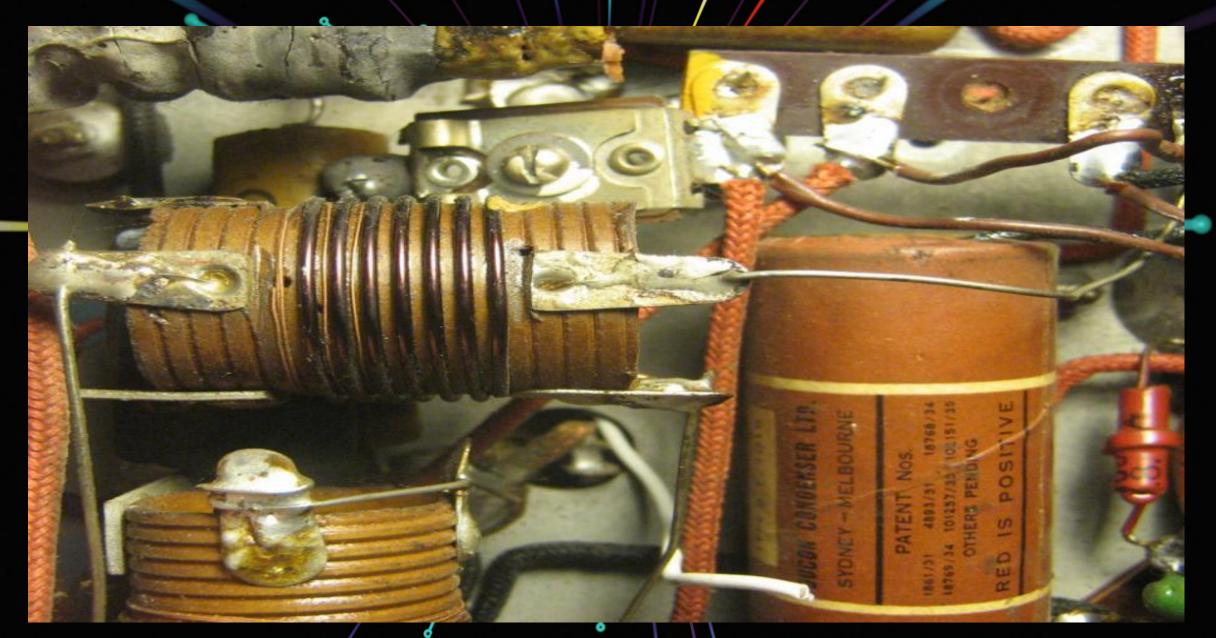
Altium。

Outline

PCB Material Overview

What is the Dielectric Constant of a material?

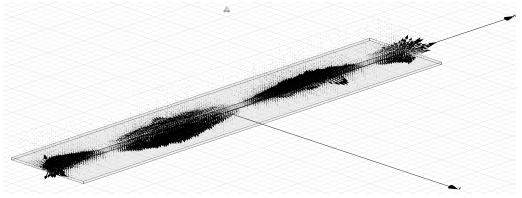
Copper foil for making circuits


5

PCB building blocks: Prepregs

Best signal performance

Who needs a PCB?

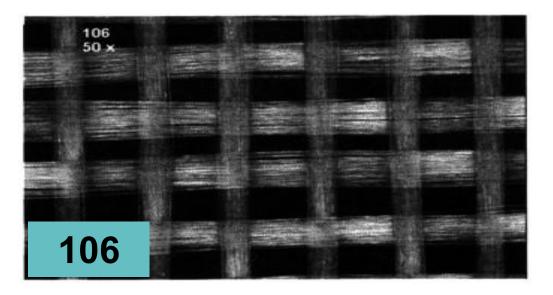

PCB (printed circuit board)

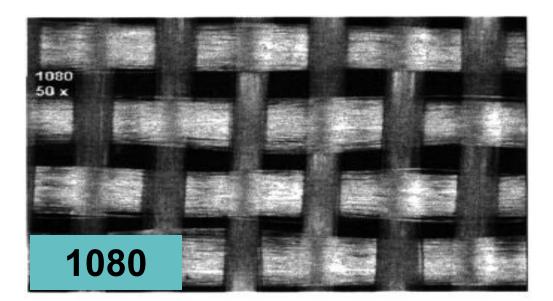
Altium

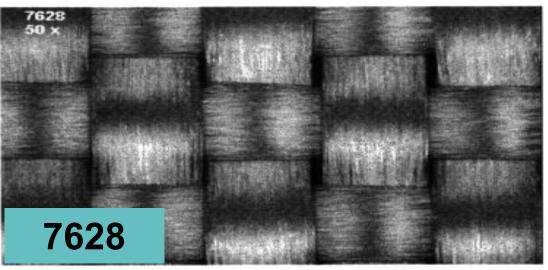
- Supports components and devices
 - Holds everything together!!!
- Electrically interconnects devices
- Transmission lines (data or RF)

MORE AND MORE its becoming electrically important!

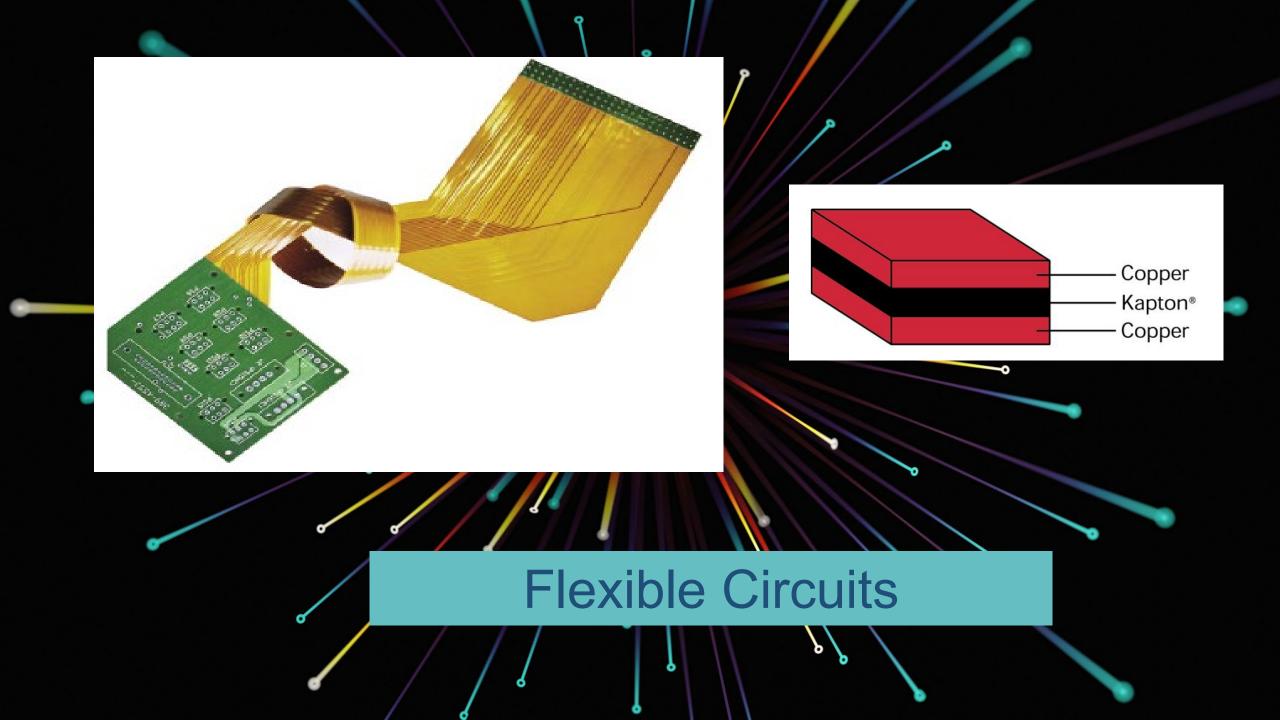
Connecting point A and B are not enough, faster data requires better transmission lines for signals between components.



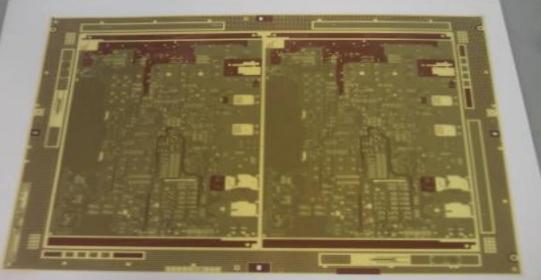

Two basic components for PCB's



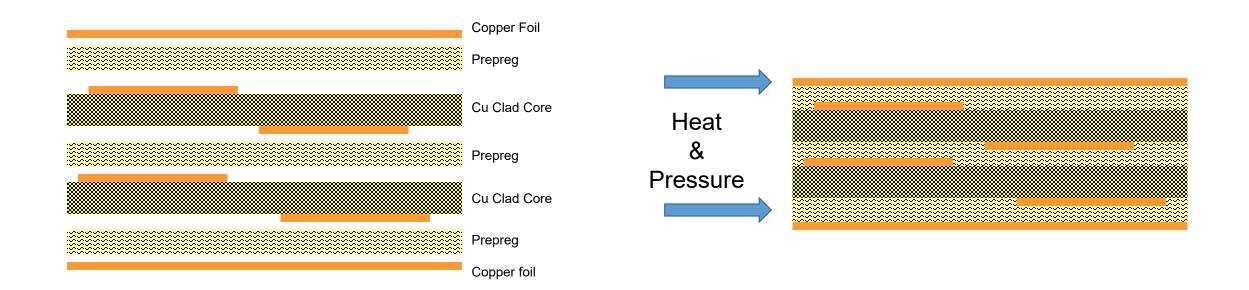
Why Glass Fabric?



- In Fabrication
 - Supports B-Stage (prepreg)
 - Controls spacing
 - Cost

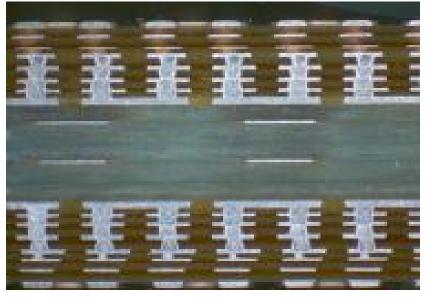

- <u>In Use</u>
 - Strength
 - Cost

Subtractively Processed PCB Layer

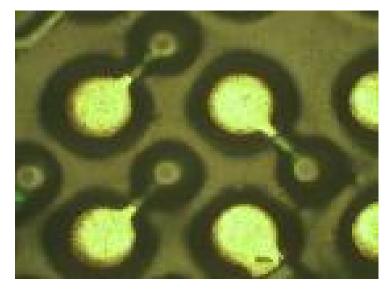

Side View

PCB Materials: The Basics

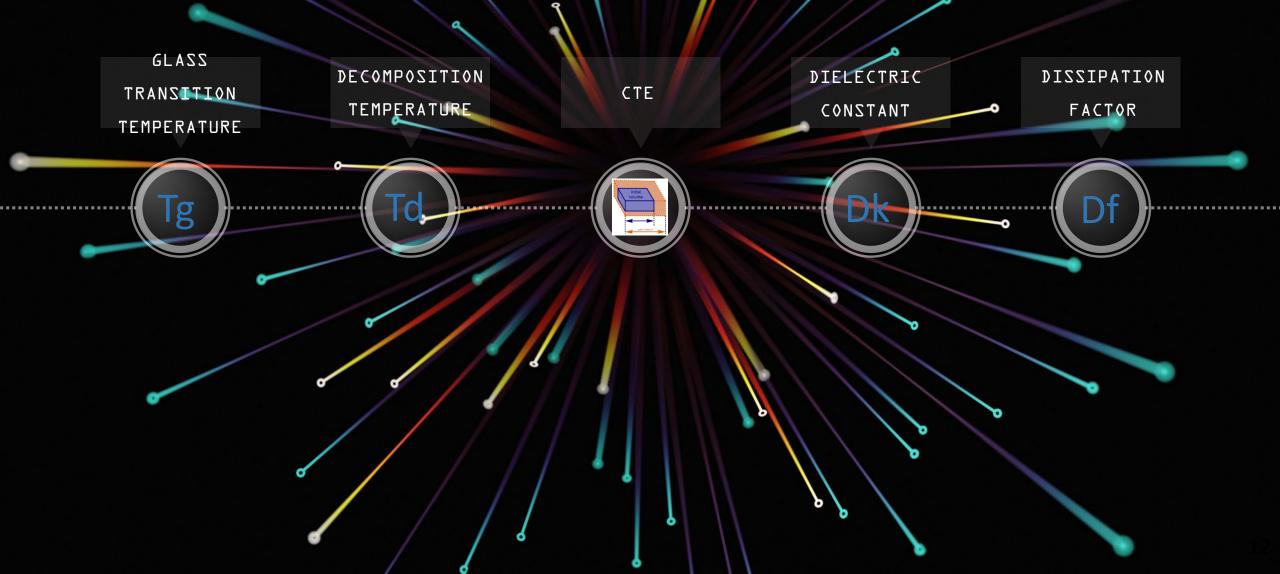
- Start with rigid and thin core copper clad.
- Circuits are formed in the copper.
- The PrePreg is the "glue" to stack these layers (AKA: B-Stage).
- Copper foil or CAC is used on the outer most layers.
- Everything is aligned and then laminated with heat and pressure.


Some PCB Construction Terms

- Foil Lam
 - Copper foil bonded with prepreg to make the outermost circuit layers, usually where components are mounted.


- Cap Lam
 - Copper clad core is circuit image one side, then laminated to the outermost part of the PCB. The blank copper side will become the circuits and pads for components.
- Alternative Oxide
 - Bond treatment used on copper foil after imaging to increase resin adhesion.
- Buried Via
 - Copper plated via that links internal layers in the z-axis.
- Blind Via
 - Maybe surface or buried. Typically laser drilled, it is plated with one end open only.
- Sub Lam (Subs)
 - Multilayer components of a complex PCB built in stages with multiple lamination cycles.
- Via in Pad
 - Plated z-axis interconnect that is filled with additional copper or resin in a surface mount pad.
- Hybrid Construction
 - Use two or more types of resin systems in the same PCB.

Plating: Brining it Together



Material Properties

Resin System Groups

Altium

Ероху

- FR-4 (most common)
- High adhesion
- Economical
- Good mechanicals
- Higher loss at higher frequencies
 - Some blends are higher performing.
- Filled and unfilled resin systems
- IPC-4101
 - 20/21/22/23/24/26/ 27/97/ 98 /99 /101 /126

Polyimide

- One of the highest in thermal performance
- High cost
- Low neat resin CTE
- Long history in aerospace.
- A little better than FR-4 for signal performance.
- Hygroscopic
- IPC-4101
 - /40 /41/ 43 /44

PPO/PPE

Blends

- Lower loss than FR-4 epoxies.
- Higher cost
- With low Dk glass, can approach PFTE performance
- Most out perform epoxy thermally
- Lower adhesion than epoxy
- IPC-4101
 - /25/90/91/96
 /102/103
- IPC-4103
 - /17

PTFE

Systems

- Can be very low loss and low Dk
- Very high cost
- Needs reinforcement
- Low moisture absorbing
- Usually high temp and/or high pressure lamination.

Altium.

Product	Tg by TMA	Td	Dk	Df	VLP Foil	PIM Sensitive applications	IPC Slash Sheets, Comments and Recommended Bit Rate/ Frequency range	Number of lamination cycles	Compatible with for Hybrid Builds
<u>185HR</u>	180	340	4.01	0.02	N/A	N	IPC-4101 /98 /99 /101 /126 Low cost Lead Free solder compatible FR4 PCB 2 to 3 GHz max	3 to 4	370HR, 408HR, I-Speed, I-Tera MT40, Tachyon 100G, Astra MT77
<u>370HR</u>	180	340	4.04	0.021	N/A	Ν	IPC-4101 /101 /98 /99 /126 Legacy High rel and lead free compatible FR4 2 to 3 GHz max	3 to 4	185HR, 408HR, I-Speed, I-Tera MT40, Tachyon 100G, Astra MT77
<u>FR408HR</u>	190	360	3.68	0.0092	Available	Ν	IPC-4101 /98 /99 /101 /126 Multifunctional low loss resin up to 12 GHz	3 to 4	185HR, 370HR, I-Speed, I-Tera MT40, Tachyon 100G, Astra MT77
I-Speed®	180	360	3.64	0.006	Standard	N	IPC-4101 /98 /99 /101 /126 Best Signal performace at this cost. Up to 20 GHz	4 to 5	185HR, 370HR, 408HR, I-Tera MT40, Tachyon 100G, Astra MT77
<u>I-Tera® MT40</u>	200	360	3.45	0.0031	Available	Ν	IPC-4103 /17 Very good signal and thermal performance. Up to 60 GHz	10	185HR, 370HR, 408HR, I-Speed, Tachyon 100G, Astra MT77
<u>I-Tera® MT40 (RF/MW)</u>	200	360	3.38 / 3.45 / 3.60 / 3.75	0.0028 - 0.0035	Available	Yes, with VLP-2 foil	IPC-4103 /17 Same as I-Tera MT40, but Dk tuned for RF applications Up to 77 GHz	10	185HR, 370HR, 408HR, I-Speed, I-Tera MT40, Tachyon 100G, Astra MT77
<u>TerraGreen®</u>	200	390	3.44	0.0039	Available	Ν	IPC-4103 /17 Halogen Free version of I-Tera MT40 Up to 60 GHz	6	IS-300MD
<u>TerraGreen® (RF/MW)</u>	200	390	3.45	0.0032	Available		IPC-4103 /17 Halgen Free for RF Up to 77 GHz	6	IS-300MD
<u>IS300MD</u>	190	390	3.06	0.0033	Available	Ν	IPC-4103 /17 Low loss halogen free for thin build-up an mobile devices. Up to 60 GHz	6	TeraGreen
<u>IS680</u>	200	360	2.80-3.45	0.0025- 0.0035	Available	N	IPC-4103 /17 Low cost PTFE alternaitve for double sided RF applications. Up to 77 GHZ	N/A	N/A double sided only
<u>IS680 AG</u>	200	360	3.00 / 3.38 / 3.45 / 3.48	0.0020 - 0.0029	Standard	Yes	IPC-4103 /17 Low cost double sided material for PIM sensitive RF applications. Up to 77 GHz	N/A	N/A double sided only
<u>Tachyon® 100G</u>	200	360	3.02	0.0021	Standard	N	IPC-4103 /17 Ultra low loss and low Dk for HSD applications. Up to 100 GHz	10	185HR, 370HR, 408HR, I-Speed, I-Tera MT40, Astra MT77
Astra® MT77	200	360	3	0.0017	Standard	Yes	IPC-4103 /17 Ultra Low loss and Low Dk alternative for RF multilayer applications. Up to 100 GHz	10	185HR, 370HR, 408HR, I-Speed, I-Tera MT40, Tachyon 100G

* Frequency range and number of lamination cycles are general guidelines and are influenced by the actual design * (7-30-2018)

UL Flame Ratings

5"

Cotton

Altium.

UL flame ratings group materials into categories based on their flammability. UL 94 covers two types of testing: vertical burn and horizontal burn. In addition to V-0, V1 and V2 there is VTM (very thin materials) and 5V, 5V-A and B

	Vertical Ratings	Requirements	← 1"→ ← -1"→
	V-0	 Specimens must not burn with flaming combustion for more than 10 seconds after either test flame application. Total flaming combustion time must not exceed 50 seconds for each set of 5 specimens. Specimens must not burn with flaming or glowing combustion up to the specimen holding clamp. Specimens must not drip flaming particles that ignite the cotton. No specimen can have glowing combustion remain for longer than 30 seconds after removal of the test flame. 	Horizontal Botions Requirements
in in the second	V-1	 Specimens must not burn with flaming combustion for more than 30 seconds after either test flame application. Total flaming combustion time must not exceed 250 seconds for each set of 5 specimens. Specimens must not burn with flaming or glowing combustion up to the specimen holding clamp. Specimens must not drip flaming particles that ignite the cotton. No specimen can have glowing combustion remain for longer than 60 seconds after removal of the test flame. 	 Rating Specimens must not have a burning rate greater than 1.5 inches/minute for thicknesses between 0.120 and 0.500 inches and 3 inches/minute for
	V-2	 Specimens must not burn with flaming combustion for more than 30 seconds after either test flame application. Total flaming combustion time must not exceed 250 seconds for each set of 5 specimens. Specimens must not burn with flaming or glowing combustion up to the specimen holding clamp. Specimens can drip flaming particles that ignite the cotton. No specimen can have glowing combustion remain for longer than 60 seconds after removal of the test flame. 	 thicknesses less than 0.120 inches. Specimens must stop burning before the flame reaches the 4 inch mark.

PCB Flame retardants

- It's important for a PCB to resist burning.
 - Almost all designs have circuits that carry enough current to start combustion under the right conditions.

- Flame retardants
 - Halogen: Bromine is the most common.
 - Non-Halogen:
 - Phosphorus compounds
 - Some metal hydroxides (aluminum, magnesium)

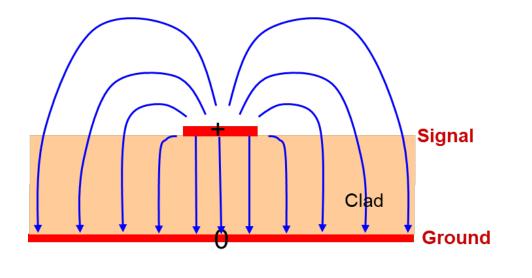
- Polyimide
 - Because of it's high decomposition temperature, most pure polyimides (no flame retardants, epoxy) have an HB rating.

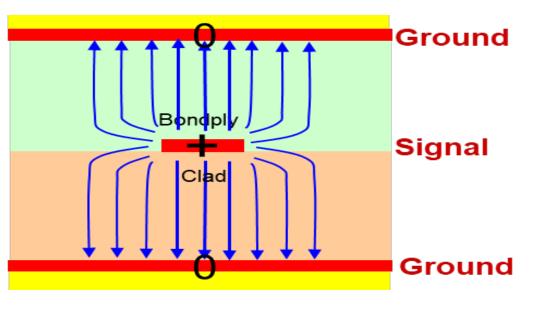
Altium.

PCB Material Overview

2

PCB building blocks: Prepregs

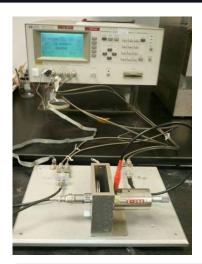

Copper foil for making circuits

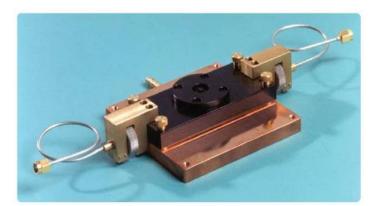

Best signal performance

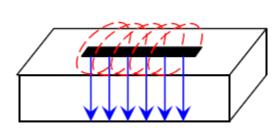
Permittivity, also known as Dielectric Constant

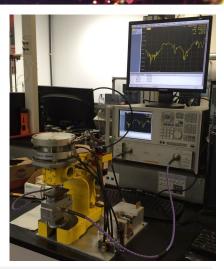
"a quantity measuring the ability of a substance to store electrical energy in an electric field."

Microstrip

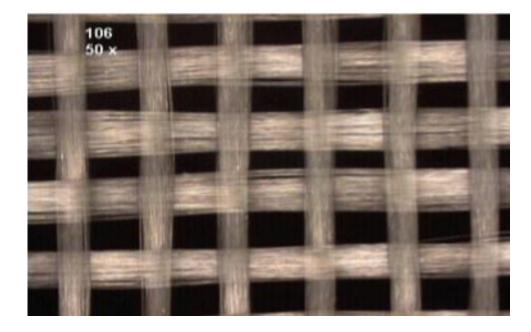


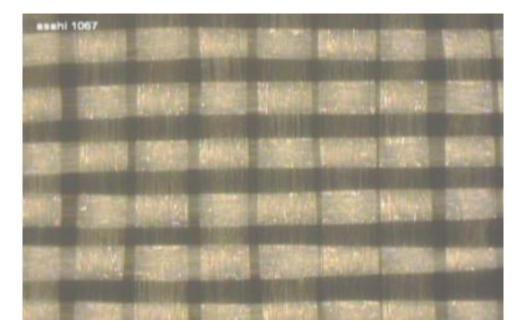

Altium


Stripline

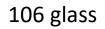

Dk and PCB (composite) Materials

Altıum.


<u>Material Ratings:</u> Data Sheet Values Different Test Methods Field Orientation Stripline X-Band, Bereskin Stripline, Split post dielectric resonator


Material Make-up: Fabric Type Fabric Weave Glass to resin ratio Micro Dk Effects Impact on the Design: Impedance Calculators Speed/Frequency PCB shop realities

PCB materials are composites and have a combination of properties


"Why does the same material have different Dk?"

- Glass to resin Ratio.
- Copper roughness (not really changing the Dk, but changes capacitance).
- Micro Dk effects along the transmission line.

Altium

1067 glass

Spread glass prepregs and laminates have a more uniform composition and therefore Dk

Some Examples, Dk and Df Charts (@ 10GHz)

Altium

Glass Style	% Resin	^{Thickness} (inch)	Dk	Df
1x 1067	65.0	.0020	3.74	.0280
1x 3313	51.0	.0035	4.03	.0230
1x 1080	58.0	.0025	3.88	.0260
2x 1080	58.0	.0050	3.88	.0260
1x 7628	44.0	.0075	4.19	0.021

Glass Style	% Resin	Thickness (inch)	Dk	Df
1x 1067	72.0	.0025	3.45	.0058
1x 3313	52.0	.0035	3.89	.0060
1x 1080	66.0	.0030	3.57	.0059
2x 1080	66.0	.0060	3.57	.0059
3x 7628	42.5	.0210	4.14	.0061

Glass Style	% Resin	Thickness (inch)	Dk	Df
1x 1067	70.0	.0020	3.05	.0017
1x 3313	59.5	.0040	3.24	.0022
1x 1078	67.5	.0030	3.09	.0018
2x 1078	67.5	.0030	3.09	.0018
4x 2116	59.0	.0200	3.25	0.022

FR-4

Mid Dk/Df

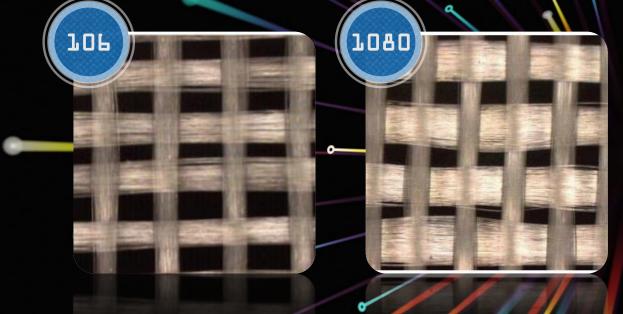
Low Dk/Df

Altium.

PCB Material Overview

What is the Dielectric Constant of a material?

PCB building blocks: Prepregs


Copper foil for making circuits

Best signal performance

Fiberglass Standard Weave

5773

- About 2.0 mils
- Great for fill of heavy coppers.
- Least dimensionally stable.

- About 2.5 mils
- Good for fill.

- 3.0 to 3.5 mils
- Some fill properties
 - Good stability

• 7.0 to 8.0 mils

7628

- Good for building thickness.
- Best for dimensional stability.

Fiberglass Spread Weave

3373

• About 2.0 mils

1067

- Great for thickness control
 - Good for laser drilling
 - Low signal skew
 - Not good for filling

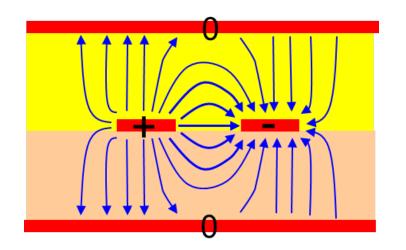
• About 3.0 Mils

1086

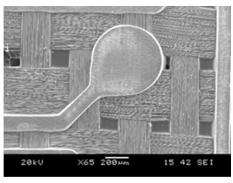
- Great for thickness control
- Good for laser drilling
 - Low signal skew
 - Not good for filling

- 3.0 to 4.0 mils
- Also low skew
- Great for thickness control

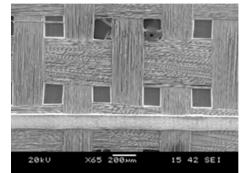
• 5.0 to 6.0 mils

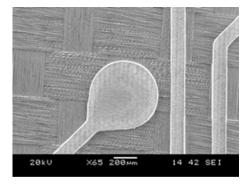

1625

- Also low skew
- Great for thickness control

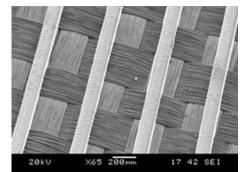

Spread Glass for Differential Pairs

Altium


- Reduces micro Dk effects
- Reduces signal skew
- Much better for cost and fabrication than rotating board on panel.



Differential Stripline



glass cloth 1080

glass cloth 1086MS

1080 vs 1086 with surface resin removed

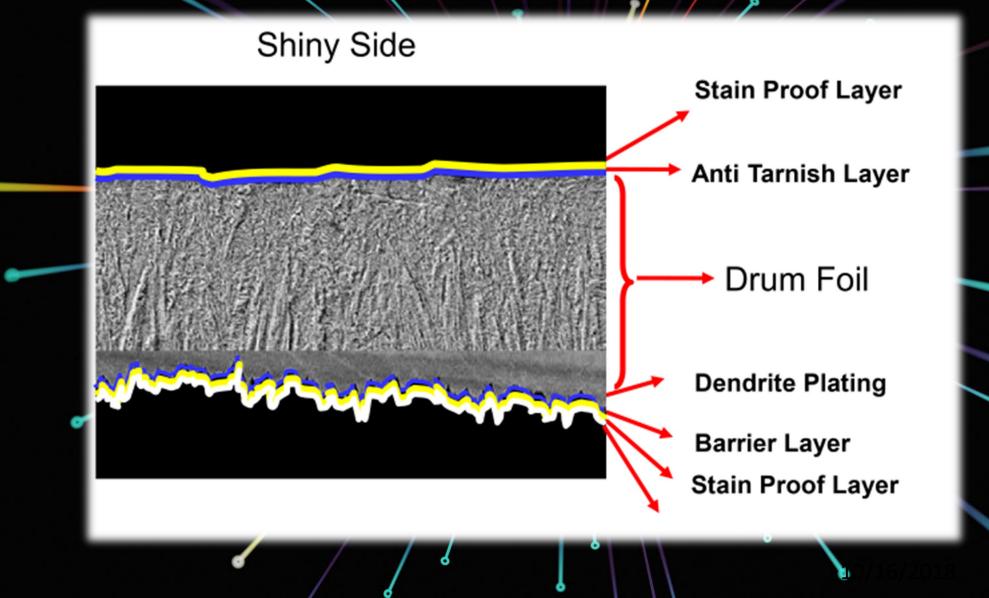
Altium.

$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

PCB Material Overview

What is the Dielectric Constant of a material?

PCB building blocks: Prepregs



Copper foil for making circuits

Best signal performance

Copper Foil for/PCB

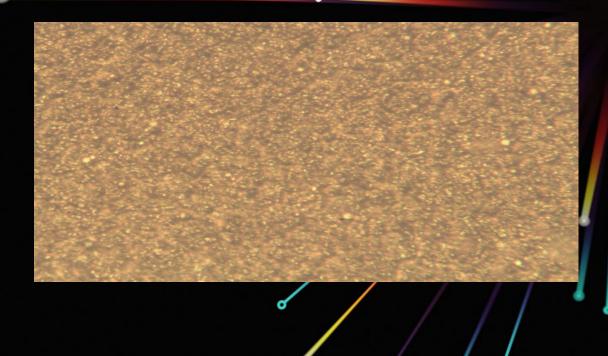
Copper Foil Acronyms

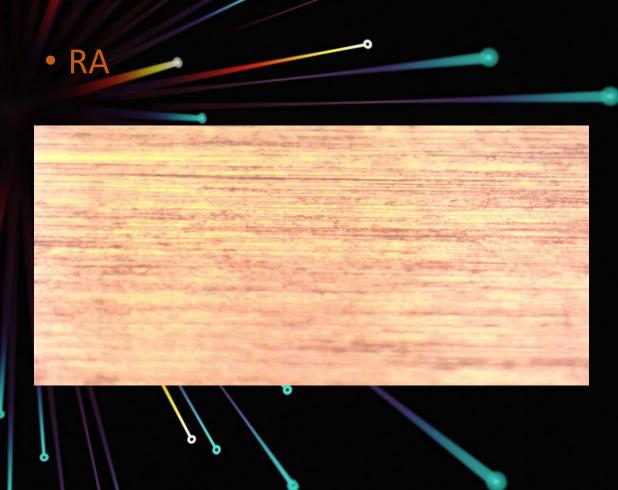
- ED Standard Shiny Copper
- HP High Performance Foil with extra tooth for high peels*

Altum

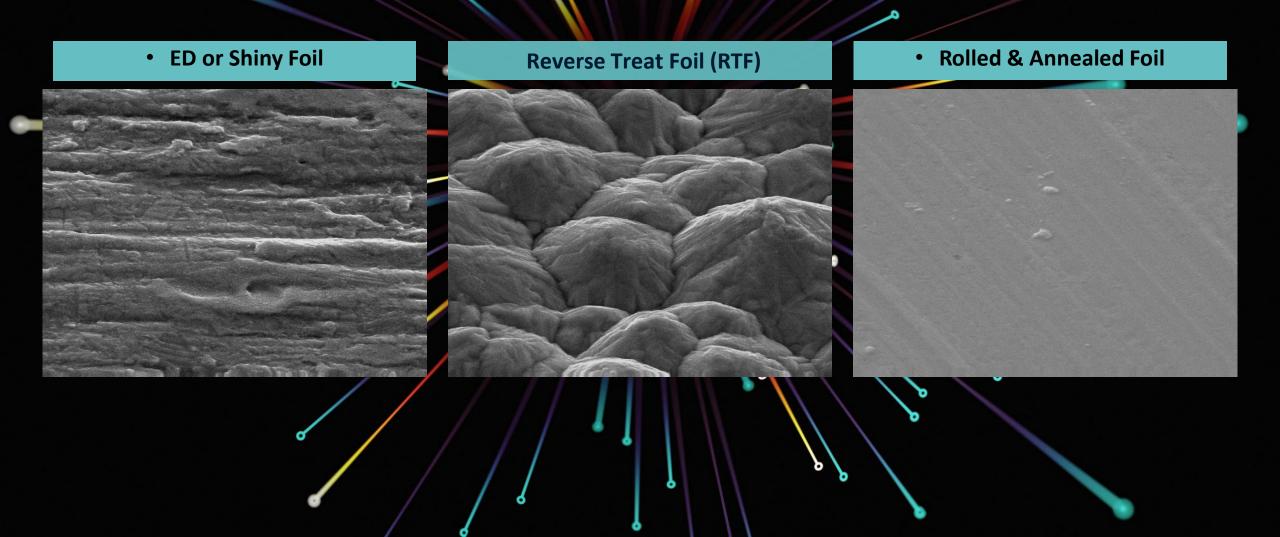
- HTE– High Tensile of Elongation, Standard Shiny Copper
- DSTF [®] Drum Side Treated Foil*
- RTF Reverse Treated Foil
- VLP Very Low Profile
- e-VLP Extra(?) Very Low Profile*
- H-VLP H (Hyper) Very Low Profile*
- VLP-2 Isola's designation for very low profile copper

* Not IPC Designations


Profile Thickness Ranges

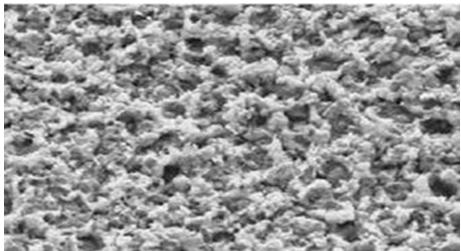

- Std Rz~=10 microns
- RTF Rz~=7 microns
- VLP Rz~=5 microns
- EVLP (HVLP) Rz~=3 microns

- VLP-2 (2 micron)
- VLP-1 (1 micron)


Copper Foils

Copper Foils SEMs @ 5000X

Processes that treat copper in PCB Fab


Copper clean/prep for Photoresist Adhesion

- Acid Clean
- Microetch
- Hand pumice
- Mechanical scrub (machine)
- Bond Treatment
 - Hand pumice
 - Mechanical scrub
 - Microetch
 - <u>Alternative Oxide Most common</u>
 - Brown Oxide (reduced) Old process

What is Alternative Oxide?

- A bond treatment was developed that contains both an "inter-granular' etch, and organic complexing agent that reacts with copper to form a brown surface coat.
- It is an <u>alternative</u> to Black/Brown oxide as a bond treatment for copper foil in printed circuit boards.
- It can produce high peels, does not suffer from "pink ring" and is easy to conveyorize. It has become the most popular bond treatment method.
- The main adhesion mechanism is from roughening of the copper surface. It does this by etching the grain boundaries faster than the surface.
- Excessive roughness will increase signal loss.
- Grain boundaries can cause foil cracks in flex if they are too deep.

Effect of Copper Bond Treatment

customer oxide

copper vendor tooth

Heavy Alt. Oxide

Lighter Alt. Oxide

.0507614 mils

customer oxide **RZ 3.5 microns** 1.1522843 mils 1.1353638 mils 1.1353638 mils copper vendor tooth

Lower signal Loss

.0338409 mils

.0676819 mils

High signal Loss

Sometimes less is more

Altium .

PCB Material Overview

What is the Dielectric Constant of a material?

2

Copper foil for making circuits

Bring it together for best signal performance

Work with the Fabricator

- What does my design need?
 - Signal performance, HSD or RF?
 - Thermal? Mechanical?
 - Density?
 - Flex?
- Material Selection
 - Dk, Df, Cost, Availability, Hybrid, etc.
 - Spread Glass Options
 - What kind of copper foil? RTF, HVLP, etc.
- PCB Fab
 - Bond Treatment
 - Impedance control
 - Surface finish
 - Soldermask

Altium

More PCB Technology:

- Embedded components
- Resin coated copper
- Embedded coax
- Molded Circuits
- Paste interconnects

2-18 um Copper (RA or ED) 4 um Polyimide

4-18 um Epoxy Adhesive

25 um PET Release Liner

Special thanks to:

Altium

DuPont Electronic Materials

Isola Laminate Systems

Judy and Megan, thanks for your help!

